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Abstract— A visual cue is introduced that exploits the visual
appearance of a single image to estimate the proximity to an
obstacle. In particular, the appearance variation cue captures
the variation in texture and / or color in the image, and is
based on the assumption that there is less such variation when
the camera is close to an obstacle. Random sampling is applied
in order to evaluate the appearance variation fast enough for
use in robotics. It is demonstrated that the randomly sampled
appearance variation cue can be complementary to optic flow
for obstacle detection; combining the two visual cues leads to
better obstacle detection performance. Random sampling leads
to sufficient computational efficiency for the cue’s utilization
in autonomous flight: a speed-up of a factor ∼100 is attained,
which allows the successful control of the 16-gram flapping
wing MAV DelFly II.

I. INTRODUCTION

While the field of Micro Aerial Vehicles (MAVs) has
seen a tremendous progress in the last decades, even ba-
sic capabilities such as obstacle avoidance remain hard to
attain. Biologically inspired, light-weight MAVs such as the
DelFly II (see Fig. 1) cannot carry sensors as heavy as a
miniature laser range finder to achieve autonomous flight [1],
[2]. Instead, they typically carry a camera onboard. At the
moment, there are two main approaches for achieving indoor
flight on the basis of onboard camera images.

The first approach accurately estimates the state of the
MAV (3D position and attitude). Such a state estimate can
be obtained by ‘matching’ camera images to known locations
in a 3D-model of the environment [3], [4], [5], [6]. However,
the algorithms still have problems with drift [6] and are still
computationally expensive.

The second approach is a bio-inspired approach that is
computationally more efficient. Typically a state estimate
is abandoned altogether and the MAV directly responds to
incoming visual inputs [7], [8]. Generally, optic flow is used
[9], [10], [11], since it has been shown to play an important
role in insect flight [12], [13]. However, both the optics and
the optic flow algorithms of flying robots are inferior to their
natural counterparts. As a consequence, autonomous flight
with optic flow is limited to environments with sufficient
texture.

While optic flow is commonly used in efforts for reach-
ing autonomous flight, image appearance has been largely
neglected. Image appearance features could be useful for
autonomous indoor flight, since they can capture information
complementary to optic flow. For example, the absence
of texture (a fail-case for optic flow) can be successfully
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Fig. 1. External image of the 16-gram flapping wing MAV DelFly II during
the obstacle avoidance experiment.

detected by extracting appearance features. The little interest
in appearance features is mainly due to the fact that their
extraction is computationally expensive.

The first contribution of this article is the introduction
of a novel appearance cue for obstacle detection. The cue
captures the variation in texture and / or color in the image,
and is based on the assumption that there is less such
variation when the camera is close to an obstacle.

The second contribution of the article is the investigation
of random sampling for significantly reducing the computa-
tional effort of extracting image appearance features. The
higher computational efficiency comes at the cost of a lower
accuracy.

The remainder of the article is organized as follows.
In Section II, we investigate the novel appearance cue. In
Section III we present a preliminary analysis on the strategy
of random sampling. In Section IV it is shown that the novel
cue is complementary to the time-to-impact determined by
optic flow. In Section V, the flapping wing MAV DelFly II
autonomously avoids obstacles using the appearance cue and
optic flow. Finally, we draw conclusions in Section VI.

II. APPEARANCE VARIATION AS A CUE FOR
OBSTACLE PROXIMITY

Humans use various cues to determine distances to objects
in their environment. Monocular visual cues include (cf.
[14]): apparent motion as in optic flow, perspective cues such
as parallel lines, occlusion, image size of familiar objects,
aerial perspective (distance fog), accomodation of the lens,
blur, texture gradient, shadows, and image height cues. Apart
from a few exceptions (e.g., [15]), roboticists have focused
on apparent motion and perspective cues, since these can be
extracted with less difficulty and computational effort.

Here, a novel cue for estimating obstacle proximity is
introduced for use in robotics. It is termed the appearance
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variation cue. When an observer approaches an object, there
are two concurrent effects:

1) The image size of the object increases in the image,
while other objects go out of view.

2) The detailed texture of the object in view becomes
more and more visible.

The main assumption underlying the novel cue is that the
variation in appearance of many different objects in view is
larger than that of the detailed texture of one object alone.
In other words, it is assumed that in general the first effect
decreases the appearance variation more than the second
effect increases it.

The appearance variation cue depends on the distance and
on the textures and colors of the objects in view. We expect
the cue to be complementary to optic flow, since (i) it is fit
for dealing with the absence of texture, a fail-case for optic
flow, (ii) it directly depends on the distance and does not
require motion of the observer, and (iii) it does not require
accurate, sub-pixel measurements in the image, which can
make it more robust to noise. The verification of the expected
complementarity with optic flow is performed in the Section
IV-B. In the remainder of this section, we verify whether the
appearance variation indeed decreases towards impact.

A. Measuring appearance variation

For measuring the appearance variation, the term appear-
ance is interpreted as textures and / or colors. The approach
to estimating the variation of these properties is to first
estimate the probability distribution of the occurrence of
different textures and / or colors in the image. Subsequently,
the Shannon entropy [16] of the estimated probability distri-
bution is calculated. Given a discrete probability distribution
p with probabilies for n different ‘events’ pi, the Shannon
entropy H(p) expressed in bits is:

H(p) = −
n∑

i=1

pilog2(pi), (1)

where pilog2(pi) = 0 for pi = 0. A high entropy corresponds
to a high variation in appearance, while a low entropy
corresponds to the contrary.

For determining the texture / color distribution, the texton
method [17] is used. This method evaluates texture on the
basis of small local image samples and was shown to outper-
form computationally more intensive filtering methods (e.g.,
Gabor filters) on a texture classification task. In addition, it
is amenable to the random sampling approach explained in
Section III. Below, we describe the implementation of the
texton method in our experiments.

The texton method starts with the formation of a dictionary
of n textons1. To this end, small image samples of size w×h
pixels are extracted from a set of images. The samples are
clustered by means of a Kohonen network [18].

After learning the dictionary, the texton method evaluates
texture by estimating the probability distribution of textons
in the image. s image samples are extracted from the image

1All parameter settings will be mentioned in Subsection II-B.

to build a histogram g. For each sample, the closest texton
i in the dictionary is determined (Euclidian distance), and
the corresponding bin in the histogram gi is incremented.
Normalizing g results in a maximum likelihood estimate p̂ of
texton occurrence in the image, with p̂i = gi/s. This estimate
is inserted into (1) to determine the texture variation.

Two aspects of the method are worth mentioning. First,
typically all possible local samples are extracted from the
image, making p̂ equal to p. Second, the texton method
captures only texture when it is applied to black-and-white
images, but it captures both texture and color when it is
applied to color images. In the latter case, the textons actually
have the dimension w × h× 3. In this article, we employ a
gray-scale dictionary, leaving color for future work.

B. Experimental setup

Three types of experiments are performed. First, we deter-
mine the appearance variation for a set of obstacle approach
sequences made with an analog wireless camera. Second, a
larger set of approach sequences is studied, which is captured
with the camera of a mobile phone. Third, to study an
even larger number of approach sequences, we also simulate
approach sequences by zooming in on digital photographs.
Of course, the disadvantages of simulated approaches are
the absence of (a) threedimensional visual effects and (b)
realistic noise conditions.

For the actual approach sequences, a set of 10 videos
was made by holding the analog wireless camera by hand
and a set of 65 videos was made in the same manner but
then with the mobile phone. Each approach starts from a
distance of 3 meters from a wall or other large obstacle,
which is approached with an approximately constant pace.
All images are resized to 160× 120 pixels. The top row of
Fig. 2 shows three shots from one of the sequences with the
wireless camera.

Fig. 2. Example images from an actual approach sequence captured with
a wireless camera (top) and a simulated approach sequence (bottom).

For the simulated approaches, a set of 62 photographs
was taken in inside environments at a distance of 3 meters
from a wall or other large obstacle. All photographs have
a resolution of 3072 × 2304 pixels. The simulated camera
has a resolution of 160 × 120 pixels. At the start of the
approach sequence the camera captures an area of 2000 ×
1500 pixels, which is resized to the camera resolution with
bicubic sampling. At the end of the approach, the captured
area equals the camera resolution. Digitally zooming in even
further would always result in a lower appearance variation,
since no new details can come into sight. Each sequence
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comprises 90 frames during which the width and height of
the captured image area decreased linearly. The bottom row
of Fig. 2 shows three images from one of the simulated
sequences.

The settings of the Texton Method Gray (TMG) are as
follows. The size of the image patches is w × h = 5 × 5,
and it extracts all possible samples in the gray-scale image,
s = 155× 115 = 17825. The dictionary has n = 30 textons
and it is learned on a separate set of images not belonging
to the approach sequences.

C. Results

Fig. 3 shows the entropy values of TMG over time (thin
gray lines) for the 10 wireless video sequences. The x-axis
represents the time, while the y-axis shows the entropy. It
also shows linear fits (thick black lines), which minimize
the mean square error to the data points.

As can be seen in Fig. 3, the slopes of the entropy over
time are all negative for the wireless video sequences. In or-
der to get an idea of how often the entropy decreases towards
impact, the proportions of negative slopes are determined for
the other video sets as well. For the larger video set of 65
sequences made with the mobile phone 80% of the slopes is
negative. For the 310 simulated sequences 90% of the slopes
is negative. The large proportions of negative slopes imply
that the appearance variation generally decreases towards
impact.
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Fig. 3. The entropy of TMG over time (light gray lines) and corresponding
linear fits (thick black lines). The entropy decreases towards impact.

In some sequences the entropy increases over time. In-
vestigation of these sequences showed that they resemble
the one in the bottom row of Fig. 2. The simulated camera
approaches a book shelf that has objects in it with different,
highly detailed textures and colors. The detailed texture leads
to an increasing entropy as it comes into sight. The existence
of sequences in which the entropy increases and the different
offsets of the entropy (see Fig. 3) suggest that the sole use of
the appearance variation cue will not lead to perfect obstacle
avoidance.

III. RANDOM SAMPLING

By extracting a random subset of all local image samples
the texton method can become computationally much more

efficient. In this section, a preliminary theoretical analysis
is presented on the effects that such random sampling has
on the computational effort (Subsection III-A) and on the
accuracy (Subsection III-B) of the texton method. We note
that the comparison of random sampling with other methods
of selecting the samples falls outside the scope of this article.

A. EFFECT ON COMPUTATIONAL EFFORT

The computational effort c of the texton method is approx-
imately:

c ≈ snW + nC, (2)

where W is the cost of comparing an extracted sample to
a texton, and nC is the cost of calculating the entropy.
During execution, n is fixed, but s can be varied freely. In
our implementation, the samples are extracted at uniformly
distributed random positions in the image.

To illustrate the effect random sampling has on the com-
putational effort, consider that a (relatively small) image of
160×120 pixels contains 17825 possible 5×5 pixel samples.
This while extracting only 100 such samples already leads
to quite accurate estimates of the texton distribution in the
image (see Section III-B). Since the bulk of the computation
of the texton method is in the term snW in (2), random
sampling easily leads to a speed-up of a factor ∼100 with
respect to full sampling.

Fig. 4 shows the mean execution frequencies (solid line)
and corresponding standard deviations of a MATLAB im-
plementation of TMG on a data set of 94 images. The
MATLAB-implementation used to obtain these results is
available online2. The number of samples s is varied from
50 to 2500 with steps of 50. For the experiments, n = 30
and w = h = 5. The processing times are measured on a
2.26 GHz laptop. For obstacle avoidance with indoor MAVs
it is reasonable to state that the execution frequency should
at least be 1 Hz (dashed line). The figure shows that this
frequency is reached by extracting 2250 or fewer samples.
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Fig. 4. Mean execution frequencies and corresponding standard deviations
of a MATLAB-implementation of TMG for a number of samples s from
50 to 2500 (blue solid line). The 1 Hz limit is shown by a red dashed line.

2http://www.bene-guido.eu/guido/
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B. EFFECT ON ACCURACY

The main question that arises when using much fewer
samples is: how does random sampling affect the accuracy
of the probability estimate?

Here this question is analyzed in the context of the
maximum likelihood estimate of the texton distribution in
the image. This distribution is a categorical distribution, and
can be fully determined by extracting all samples from the
image. Our analysis consists of determining the relation of
the number of samples and the expected L1-distance between
the maximum likelihood estimate and the actual distribution
in the image.

We determine the probabilities for distances between
the estimated and actual distributions for the case with
resampling. Extracting a fixed number of s samples from
random image locations results in texton occurrences g =
〈g1, g2, . . . , gn〉. The vector g follows a multinomial distribu-
tion and it has the following well-kown probability formula:

P (g) =
s!

g1!g2! . . . gn!
pg11 pg22 . . . pgnn , (3)

with
∑

g1 + g2 + . . . + gn = s. For a given number of
samples s, this formula allows one to iterate over all possible
vectors g while determining the distance d between the
estimated distribution p̂ = g/s and the actual distribution
p. The probability for distance d = d(p̂, p) can then be
incremented by P (g). Iterating over all g permits to calculate
P (d), the probability distribution of the distances between
the estimated and actual distribution.

Although the above method is not elegant, it is tractable
for a limited number of samples, since there are also a limited
number of possible distances. To illustrate the effects of
random sampling, we apply the method to the categorical
distribution with n = 6: p = 〈0.5, 0.1, 0.1, 0.05, 0.05, 0.2〉.
Fig. 5 shows the distribution P (d) (y-axis) for s =
{50, 100, 150, 200, 250, 300} (x-axis), where illuminance
represents high (white) to low (black) probabilities. The
black line indicates the mean distance to the actual distri-
bution and the white dashed line the 95th percentile.

Two main observations can be made from Fig. 5. First, as
to be expected, the mean of the distribution gets closer to
the actual distribution as the number of samples increases.
Second, this effect obeys the law of diminishing returns,
so that a modest number of samples already reduces the
probability for ‘large’ distances considerably.

When the distribution is known, P (d) can be determined
to provide certainty bounds to the distance between the
estimated and actual distribution. For example, for the cat-
egorical distribution with replacement given above, P (d <
0.20 ∧ s = 150) = 0.95. The problem is of course that
the actual distribution is not available. Still, we can limit
the 95% certainty bound from above by assuming the worst
case scenario, which occurs when the entropy of the actual
distribution is highest3. The relation between entropy and the
mean L1-distance is particularly relevant to the appearance

3A formal proof of this matter is beyond the scope of this paper.
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Fig. 5. Relation between the number of samples used in random sampling
and the accuracy of the estimate. The y-axis shows the L1-distance between
the estimated and the true distribution, the x-axis shows the number of
samples s. The intensity represents the probability, where white indicates
high probability and black a low probability. The black line indicates the
mean distance from the actual distribution, the white dashed line the 95th

percentile.

variation cue, since it uses the entropy as a measure of
obstacle proximity. Near-collisions are associated with low
entropy distributions, which suffer the least from random
sampling.

IV. COMPLEMENTARITY WITH OPTIC FLOW

In this section, we investigate a task in which the appear-
ance variation cue and / or the optic flow are used to classify
whether the time-to-impact τ is larger or smaller than a
desired detection time τ∗. In Subsection IV-A the optic flow
method is explained. In Subsection IV-B the classification
performances of the methods are evaluated.

A. OPTIC FLOW FOR CALCULATING TIME-TO-IMPACT

The setting of obstacle avoidance with light-weight MAVs
makes computational efficiency and robustness to noisy
images the main priorities for the optic flow algorithm.
For this reason, simplicity of the optic flow algorithm is
preferred over detailed information on the environment. The
implementation of the algorithm has two parts: (1) finding
and tracking feature points to determine several optic flow
vectors between two images, and (2) determining τ on the
basis of the vectors.

For the first part, the method of Lucas-Kanade [19],
[20] from the openCV library is used4. The second part is
performed as follows. It is assumed that the camera is moving
straight towards a flat surface orthogonal to the movement
direction, while the camera possibly undergoes pitch and
yaw changes. This assumption implies that after removal
of the influence of pitch and yaw movements, the Point of
Expansion (PoE) is in the center of the image. To estimate the
influence of pitch and yaw movements, the median horizontal
and vertical flow in the image are determined. These are
subtracted from all flow vectors, presumedly leading to the
PoE being in the center. Subsequently, each optic flow vector
is used to determine the distance from the old location

4http://www.opencv.org/
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(xt, yt) and the new location (xt+1, yt+1) to the center of the
image (xc, yc); dc,t and dc,t+1 respectively. The difference
in distance to the center is Δdc,t. Each optic flow vector
leads to one estimate τ̂ :

τ̂ = dc,t/Δdc,t (4)

Since it is assumed that there is one flat surface and the optic
flow vectors are noisy, the final estimate τOF is taken to be
the median of the resulting τ̂ -distribution. The uncertainty
of τOF can be captured with the standard deviation στOF

.
Despite the strong assumptions, this straightforward method
works rather well in practice.

B. CLASSIFICATION PERFORMANCE

After determining TMG’s entropy, τOF , and σOF on the
set of videos, we investigate the classification performances
of different combinations of methods. The task is to classify
a time step t as positive when τ ≤ τ∗. The following logical
expressions are used for classification: ‘τOF < ϑ1’, ‘TMG
< ϑ1’, ‘τOF < ϑ1 ∧ σOF < ϑ2’, ‘τOF < ϑ1∨ TMG < ϑ2’,
and ‘(τOF < ϑ1 ∧ σOF < ϑ2) ∨ TMG < ϑ3’. The rationale
behind this last expression is that the optic flow estimate
should only be trusted when it is accurate enough, with the
entropy of TMG to ensure detection if this is not the case.
For brevity, the thresholds ϑi will be omitted from here on.

By varying the thresholds in the above expressions, a
ROC-curve can be made that represents the trade-off between
True Positives (detections when τ is indeed smaller than τ∗)
and False Positives (detections when τ is actually larger than
τ∗).
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Fig. 6. ROC-curves of different combinations of variables, τ∗ = 40, for
the video sequences made with the flying DelFly II.

Fig. 6 shows the ROC-curves for 19 video sequences
recorded with the flapping wing MAV DelFly II. It includes
the methods τOF (dotted), TMG (thin solid), τOF ∧ σ(τOF )
(dash-dotted), τOF∨ TMG (dashed), and (τOF ∧ σ(τOF ))
∨ TMG (thick solid) for τ∗ = 40 (expressed in frames to
impact). The x-axis represents the ratio of false positives,
while the y-axis represents the ratio of true positives. The
higher the curve, the better. TMG has the lowest FP ratios
for a TP ratio smaller than 0.91. For higher TP ratios, the

TABLE I

AUC FOR COMBINATIONS OF τOF , σ(τOF ), AND TMG. BOLD

INDICATES THE HIGHEST AUC. DELFLY II SEQUENCES.

τ
∗

τOF TMG τOF ∧σ(τOF ) τOF∨TMG (τOF ∧σ(τOF ))∨ TMG

10 0.787 0.844 0.722 0.846 0.824
20 0.727 0.848 0.713 0.831 0.810
30 0.775 0.934 0.753 0.922 0.905
40 0.726 0.916 0.709 0.910 0.906
50 0.682 0.853 0.672 0.860 0.850

TABLE II

AUC FOR COMBINATIONS OF τOF , σOF , AND TMG. BOLD

INDICATES THE HIGHEST AUC. HAND-MADE SEQUENCES.

τ
∗

τOF TMG τOF ∧ σOF τOF ∨ TMG (τOF ∧ σOF ) ∨ TMG

10 0.836 0.881 0.769 0.876 0.897
20 0.893 0.976 0.848 0.963 0.877
30 0.926 0.927 0.899 0.942 0.936
40 0.908 0.819 0.896 0.867 0.944
50 0.887 0.733 0.880 0.769 0.974

combination of TMG with σ(τOF ) and τOF gives the best
results.

The quality of the classifier can be expressed by the
Area Under the Curve (AUC). Table I shows the AUC-
values for the different methods for different τ∗. A bold
setting indicates the best method. Remarkably, the optic flow
estimate τOF is constantly outperformed by TMG on the
DelFly images. The best performances are either obtained
by the combination of τOF and TMG, or by TMG alone.
Importantly, these results have been obtained while TMG
only extracted 100 samples from each image.

Fig. 7. Two subsequent images in a video made onboard the DelFly II
with deformations caused by the combination of the flapping frequency of
the DelFly and the line-by-line recording of the camera.

On the other image sets such as the hand-held video
sequences, optic flow performs on a par with TMG (see
Table II). On those sequences, the best results are almost
always obtained by a combination of the two methods.
Optic flow seems to perform badly on the DelFly video
sequences, because the DelFly images are rather degraded.
In particular, the high-frequent flapping movements of the
DelFly in combination with the line-by-line recording of
the video images lead to image deformations. Fig. 7 shows
two subsequent images made with the camera onboard the
DelFly II. These images are particularly affected by the
flapping movements: the (straight) edge of the closet in the
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center of the image is curved to the right in the first image
and curved to the left in the second image. As a consequence
of these unpredictable deformations, images such as those in
Fig. 7 do not comply anymore with the linear camera model
assumed by optic flow algorithms.

V. OBSTACLE AVOIDANCE EXPERIMENT

The final experiment involves the use of both the random
sampling method and optic flow to control the flapping wing
MAV DelFly II [21] in order to verify whether the accuracy
is good enough for successful obstacle avoidance.

The DelFly II is light weight (16 grams) and cannot yet
carry its own processing onboard. Therefore, the onboard
video images are sent to a ground station that processes
them in order to send new control commands. Of course,
computational efficiency stays of the essence. If offboard
processing is not powerful enough for an algorithm, it is
probable that eventual onboard processing will not be either.

The video frame rate is 30Hz. The frames are down-sized
to 160 × 120 images and processed by both the optic flow
algorithm and the texton method. The optic flow algorithm
runs at 30Hz. The parameters for the texton method are n =
30 and s = 100.

While the height of the DelFly is controlled by a human
pilot, the rudder is entirely controlled by the ground station.
The control of the rudder is straightforward: it performs a
sequence of open loop commands if either the texton method
or the optic flow detects an imminent collision. The sequence
is always executed fully before new commands are allowed.

The DelFly successfully avoided obstacles in two different
office spaces of approximately 5 × 5 m with the help of both
the texton method and the optic flow. Onboard and external
videos are available at http://www.bene-guido.eu/guido/. Fig.
1 is a still from the external video of the first experiment, in
which the DelFly avoids a texture-poor wall. Both the texton
method and the optic flow algorithm triggered turns of the
DelFly during the experiment.

As a result of using the appearance variation cue, the
DelFly maintains a slightly larger distance to completely
uniform walls than to walls with (some) texture. Although
the DelFly could in principle fly further towards these walls
without crashing, it will receive no further visual information
that reliably indicates at which point the DelFly should turn.
We regard it as a strength of the algorithm that it avoids such
non-informative situations.

VI. CONCLUSIONS

Our main conclusion concerning the appearance variation
cue is that for indoor environments the entropy of texture
distribution generally decreases when approaching an obsta-
cle. Still, the entropy can increase when the obstacle has a
detailed texture. This implies that the appearance cue cannot
be used in isolation to detect all obstacles. Nonetheless, the
entropy values can be a useful complement to optic flow: the
AUC of a classifier using both cues is higher than that of
either cue alone. The performance improvement provided by
the novel cue increases when the images are more degraded.

Furthermore, the results show that random sampling can
make the extraction of the appearance variation cue fast
enough for use in indoor flight. The computational effort
is reduced by a factor ∼100, while retaining an acceptable
accuracy.

Future work will include a deeper investigation of the ap-
pearance variation cue, for example in outdoor environments.
Due to the abundance of texture outdoors, we expect the
appearance variation cue to work less well and the optic
flow to work better in outdoor areas. Still, we expect the
combination of the two cues to outperform either one alone.
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